skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Zihan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum information can be used to achieve novel cryptographic primitives that are impossible to achieve classically. A recent work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses on equipping the dual-Regev encryption scheme, introduced by Gentry, Peikert, Vaikuntanathan (STOC 2008), with key revocation capabilities using quantum information. They further showed that the key-revocable dual-Regev scheme implies the existence of fully homomorphic encryption and pseudorandom functions, with both of them also equipped with key revocation capabilities. Unfortunately, they were only able to prove the security of their schemes based on new conjectures and left open the problem of basing the security of key revocable dual-Regev encryption on well-studied assumptions. In this work, we resolve this open problem. Assuming polynomial hardness of learning with errors (over sub-exponential modulus), we show that key-revocable dual-Regev encryption is secure. As a consequence, for the first time, we achieve the following results: Key-revocable public-key encryption and key-revocable fully-homomorphic encryption satisfying classical revocation security and based on polynomial hardness of learning with errors. Prior works either did not achieve classical revocation or were based on sub-exponential hardness of learning with errors. Key-revocable pseudorandom functions satisfying classical revocation from the polynomial hardness of learning with errors. Prior works relied upon unproven conjectures. 
    more » « less
    Free, publicly-accessible full text available November 30, 2025